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a b s t r a c t

Classical economic models make behavioral predictions based on the assumption that people are fully
rational and care only about maximizing their own payoffs. Although this approach successfully
explains human behavior in many situations, there is a wealth of experimental evidence demonstrating
conditions where people deviate from the predictions of these models. One setting that has received
particular attention is fixed length repeated games. Iterating a social dilemma can promote cooperation
through direct reciprocity, even if it is common knowledge that all players are rational and self-
interested. However, this is not the case if the length of the game is known to the players. In the final
round, a rational player will defect, because there is no future to be concerned with. But if you know the
other player will defect in the last round, then you should defect in the second to last round, and so on.
This logic of backwards induction leads to immediate defection as the only rational
(sub-game perfect Nash equilibrium) strategy. When people actually play such games, however,
immediate defection is rare. Here we use evolutionary dynamics in finite populations to study the
centipede game, which is designed to explore this issue of backwards induction. We make the following
observation: since full cooperation can risk-dominate immediate defection in the centipede game,
stochastic evolutionary dynamics can favor both delayed defection and even full cooperation.
Furthermore, our evolutionary model can quantitatively reproduce human behavior from two experi-
ments by fitting a single free parameter, which is the product of population size and selection intensity.
Thus we provide evidence that people’s cooperative behavior in fixed length games, which is often
called ‘irrational’, may in fact be the favored outcome of natural selection.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Evolutionary dynamics provide a powerful set of tools for
investigating a range of issues in biology and the social sciences
(Colman, 1995; Cressman, 2003; Dasgupta, 2009; Enquist and
Leimar, 1993; Helbing and Yu, 2009; Hofbauer and Sigmund,
1998; Maynard Smith, 1982; McNamara et al., 1999; Nowak,
2006; Nowak and Sigmund, 2004). Formalizing evolutionary
processes using mathematics gives insight into which genotypes,
phenotypes and behaviors can be favored by natural selection.
Fitter individuals become more common, while less fit individuals
die out. Evolutionary dynamics can describe genetic or cultural
evolution. In the latter context, individuals adopt the strategies or
preferences of others who are more successful.

The study of cooperation through reciprocal interactions has
been a particularly active area of research in both biology and
economics (Axelrod and Hamilton, 1981; Fudenberg and Maskin,
1986, 1990; Lindgren, 1991; Nowak and Sigmund, 1992, 1993,
1998, 2005; Ohtsuki and Iwasa, 2006; Pacheco et al., 2006; Rand
et al., 2009a; Sigmund, 2010; Trivers, 1971). When individuals
interact repeatedly (direct reciprocity) or carry reputations across
interactions with different partners (indirect reciprocity), both
evolution and rational prospective reasoning can favor helping
others at a cost to oneself. Results from many experimental
studies are broadly consistent with the implications of these
theoretical models (Bolton et al., 2005; Dal Bó, 2005; Dal Bó and
Fréchette, 2011; Dreber et al., 2008; Frank et al., 1993; Fudenberg
et al., in press; Milinski and Wedekind, 1998; Milinski et al., 2001,
2002a, 2002b; Rand et al., 2009b; Rockenbach and Milinski, 2006;
Semmann et al., 2003; Wedekind and Milinski, 2000). The predictions
about human behavior in repeated games generated by evolutionary
game dynamics have thus far been largely qualitative as opposed to
quantitative (an exception is Rand et al. (2009a)), and have typically
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been in agreement with the predictions of economic models. In the
present paper, we demonstrate that an evolutionary analysis can
explain behavior in a context which has traditionally been very
challenging for economic models, and furthermore that the evolu-
tionary approach can quantitatively reproduce observed human
behavior in the laboratory.

We focus on the ‘centipede game,’ in which players have a fixed
number of potentially cooperative interactions (Rosenthal, 1982;
Selten, 1978). Such fixed length repeated games have generated
much interest and discussion in the economic, psychological and
biological literature (Basu, 1990; Binmore, 1987; Cressman and
Schlag, 1998; Kreps and Wilson, 1982a, 1982b; Kreps et al., 1982;
Ladret and Lessard, 2008; Lessard and Ladret, 2007; McKelvey and
Palfrey, 1992; Pettit and Sugden, 1989). Some scholars have argued
that these games reveal a fundamental mismatch between the
predictions of rational self-interest models and actual human
behavior. While direct reciprocity can stabilize cooperation in
repeated games among fully informed, rationally self-interested
agents (Fudenberg and Maskin, 1986; Nowak and Sigmund, 1992),
this is only true when there is uncertainty about when the gamewill
end. If the total number of rounds is known to both players, the logic
of backwards induction dooms cooperation. In the final round,
defection is always the optimal move because there is no ‘shadow
of the future’ to incentivize cooperation. But if both players will
certainly defect in the last round, then the actions in the second-to-
last round have no repercussions, and so on back to round 1.
Therefore, cooperation collapses if rationality of both players is
common knowledge (Kreps and Wilson, 1982a, 1982b; Kreps et al.,
1982). The only sub-game perfect Nash equilibrium is immediate
defection, and this equilibrium is selected by deterministic evolu-
tionary dynamics in the two-player centipede game (Cressman and
Schlag, 1998; Giovanni, 2000). Thus both players forgo a large
potential payoff. Contrary to such predictions, however, behavioral
experiments robustly demonstrate that most human subjects do not
defect in the first round of fixed length games (Bornstein et al.,
2004; Ho and Weigel, 2005; McKelvey and Palfrey, 1992; Nagel and
Tang, 1988).

The centipede game (Rosenthal, 1982; Selten, 1978) was
devised to explore this issue of backwards induction. It is similar
to an alternating prisoners’ dilemma (Frean, 1994; Nowak and
Sigmund, 1994), except that the game ends following the first
defection. A particular form of the centipede game which we
focus on here is defined such that payoffs grow exponentially
with each round of cooperation, as opposed to linearly as in the
standard prisoners’ dilemma. At the outset of the centipede game,
there are two possible payoffs: a large payoff of a1 and small
payoff of a0 (a1 4 a0). One player is in control of the game at any
given time. In each round, the controlling player has two options:
(i) cooperate by passing control to the other player, in which case
both payoffs are multiplied by a factor b; or (ii) defect by taking
the larger payoff and giving the smaller payoff to the other player.
The game continues until either one player defects, or a fixed
number of decisions occur. If the game reaches the final round
and the controlling player cooperates, the payoffs are multiplied
by b and then the cooperating player receives the smaller payoff
while the other player receives the larger payoff. Sample payoff
structures for four and six round games are shown in Fig. 1.

In the centipede game, players are presented with a social
dilemma. Consider the case shown in Fig. 1, where a1¼0.4,
a0¼0.1, and b¼2. If you cooperate and your co-player also
cooperates, you can earn more than if you defect and keep the
larger amount now (1.6 vs. 0.4 if starting in the first round, for
example). However, if you cooperate and the co-player defects,
you earn less than if you defect now (0.2 vs 0.4 if starting in the
first round). Both players can potentially earn high payoffs if they
cooperate repeatedly. Yet in each round, there is a temptation to

defect and ensure a larger payoff for yourself. Because the game
ends immediately when one player defects, there is no possibility
of retaliation; and because the game has a maximum length,
backward induction unravels cooperation.

Numerous behavioral experiments have been conducted to see
how people play the centipede game (Bornstein et al., 2004; Ho
and Weigel, 2005; McKelvey and Palfrey, 1992; Nagel and Tang,
1988). Contrary to the logic of backwards induction, most players
cooperate initially, and start to defect only as the end of the game
approaches. One explanation of this behavior assumes that there
is incomplete information about the other player (Fudenberg and
Levine, 1997; Kreps and Wilson, 1982a, 1982b; Kreps et al., 1982;
McKelvey and Palfrey, 1992). If your opponent might not be
rational, or might be altruistic and care about your payoff as well
as her own, then it can be rational to cooperate initially. However,
it is never rational to cooperate in the final round, regardless of
your beliefs about the other’s strategy. Another explanation,
‘bounded rationality,’ asserts that subjects can only backward
induct several steps due to cognitive limitations (Ellingsen and
Östling, 2007; Neyman, 1985; Simon, 1972). It has also been
shown that extrinsic sources of strategy variation (such as local
mutation) can promote full cooperation in fixed length games,
although not the intermediate levels of cooperation observed
empirically among humans (McNamara et al., 2004).

Here we study the evolution of cooperation in the centipede
game using finite-sized stochastic population dynamics (Imhof and
Nowak, 2006; Nowak et al., 2004; Taylor et al., 2004; Traulsen et al.,
2007). We show that natural selection can favor both full coopera-
tion as well as partial cooperation, without assumptions about
other-regarding preferences or cognitive limitations. Furthermore,
our evolutionary model quantitatively reproduces the behavior of
humans from two experiments.

2. Model

We consider a well-mixed population of size N playing a
centipede game of maximum length L. The strategy of player i,

Fig. 1. Payoff structure for a four (A) and six (B) round centipede game, using payoff
values a1¼0.4, a0¼0.1 and b¼2. The game alternates between Player 1 and Player 2.
At each node one player chooses whether to cooperate or defect. If he defects, he gets
the larger payoff (initially valued at a1) and the other player gets the lower payoff
(initially valued at a0). If he cooperates, both payoffs are multiplied by b and play
passes to the other player. If a player cooperates in the final round, the payoffs are
multiplied by b and then the cooperator automatically receives the smaller payoff.
The deciding player is shown inside the circle for each decision node. Defection is
represented by a red down arrow, while cooperation is a blue arrow to the right. At
the base of each downward arrow, the payoffs of both players are shown. The payoff
of the player choosing to end the game at that node is shown in bold.
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si, is defined as the last round in which player i will cooperate
(sirL). Thus immediate defection is s¼0, full cooperation is s¼L,
and intermediate cooperation is 0osoL. When two players
interact, each is equally likely to be either Player 1 or 2. A player’s
expected payoff in a given interaction is the average of the payoffs
received in both roles. We begin by assuming that players choose
the same strategy in both roles; we then show that our results are
robust to allowing players to choose different strategies in the
role of Player 1 versus Player 2. As the population is well mixed,
each player’s average payoff p is the average of the expected
payoffs when playing with each other member of the population.
The resulting payoff matrix using a1¼0.4, a0¼0.1, and b¼2 is
shown in Table 1.

We model the change of strategies in the population using a
probabilistic process in which higher payoff strategies are more
likely to spread while lower payoff strategies are more likely to
die out. If game payoffs represent reproductive success, this
corresponds to the process of (haploid) genetic evolution. These
dynamics can also describe a process of social learning (Aoki et al.,
2011; Boyd and Richerson, 1988; Sigmund et al., 2010), in which
people engage in payoff-based imitation. There are a wide range
of contexts in which people may choose strategies by imitating
successful others. Payoff-based imitation is a useful heuristic
which can often allow people to find successful strategies much
more quickly (and with lower cognitive costs) than deductive,
prospective reasoning (Rendell et al., 2010). In our model, a
strategy specifies a particular set of behaviors, and evolution
occurs based on the material payoff earned by that behavior. In
the context of humans, therefore, each strategy can be thought of
as corresponding to a set of preferences that cause agents with
strategy si to rationally choose to cooperate through period i, and
agents then adopt each other’s preferences with adoption being
biased by the material payoff: you are more likely to adopt the
norms and preferences of a person you see as being more
successful.

We use the frequency dependent Moran process (Hauert et al.,
2007; Moran, 1962; Nowak et al., 2004). A player’s fitness is
defined as f¼1" wþwp, where w is the intensity of selection and
pj is the expected payoff of agent j. In each generation, one agent i
is randomly chosen to change strategy (i.e., die). With probability
1–u, agent i picks another agent j to imitate, proportional to
fitness f. The selection intensity, w, determines how much the
payoff contributes to the fitness of a player. In the limit w-0, we
have ‘weak selection’: the game contributes virtually nothing to
fitness and reproduction is almost entirely at random with
respect to game strategy. Or put differently, learning is extremely
error prone and learners pick teachers to imitate almost at
random (with respect to game payoff); this could represent a
situation in which many factors other than behavior in the game
in question contribute to a person’s success. As w increases
towards 1, learning occurs with ever greater fidelity, such that

learners are increasingly likely to imitate players with higher
game payoffs. With probability u, on the other hand, a ‘mutation’
occurs instead and agent i randomly picks a strategy between
0 and L. In the context of learning, mutation corresponds to either
innovation/experimentation or confusion about the teacher’s
strategy.

We begin by considering the low mutation limit. When u is
sufficiently small, there are rarely more than two strategies
present in the population at once. Starting from a homogeneous
population of players all of whom use the same strategy, a mutant
strategy will either become extinct or go to fixation before
another mutant arises. The frequency of each strategy in the
population averaged over time (i.e., frequency in the steady state
distribution) can be directly calculated from the fixation prob-
abilities of each possible mutant arising in a population of each
possible resident (Fudenberg and Imhof, 2006; Imhof et al., 2005;
Nowak et al., 2004). We use the calculation method introduced by
Antal et al. (2009a), which is reproduced in Appendix A. Later, we
will also consider higher mutation rates using agent based
simulations.

Table 1
Payoff matrix for a centipede game with a large initial payoff of a1¼0.4, a small
initial payoff of a0¼0.1, and a cooperative multiplier of b¼2. Shown is the row
player’s payoff. In a four round game, the available strategies are s¼0 (immediate
defection) through s¼4 (full cooperation); in a six round game all seven strategies
shown are possible.

s¼0 s¼1 s¼2 s¼3 s¼4 s¼5 s¼6

s¼0 0.25 0.6 0.6 0.6 0.6 0.6 0.6
s¼1 0.15 0.5 1.2 1.2 1.2 1.2 1.2
s¼2 0.15 0.3 1 2.4 2.4 2.4 2.4
s¼3 0.15 0.3 0.6 2 4.8 4.8 4.8
s¼4 0.15 0.3 0.6 1.2 4 9.6 9.6
s¼5 0.15 0.3 0.6 1.2 2.4 8 19.2
s¼6 0.15 0.3 0.6 1.2 2.4 4.8 16

Fig. 2. Decreasing the selection strength favors increasingly cooperative strate-
gies. The frequency of each strategy in the four round (A) and six round (B) games
is shown for variable selection strength, using a1¼0.4, a0¼0.1, b¼2 and N¼1000.
At strong selection w¼1, immediate defection s¼0 dominates the population. As
w decreases, s¼1 (cooperating once and then defecting) becomes the most
common strategy, followed by s¼2, and so on until finally full cooperation
becomes most frequent. Nash equilibrium analysis finds that full cooperation is
irrational under all circumstances. Nonetheless, full cooperation can be favored by
evolution in finite populations if the intensity of selection is sufficiently weak.
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3. Results

We begin by examining the four round centipede game. Using
payoffs a1¼0.4, a0¼0.1, and b¼2 and population size N¼1000,
we vary selection strength from weaker selection w¼0.0001 to
stronger selection w¼1. We then ask which of the five possible
strategies s¼[0,1,2,3,4] can be favored by natural selection. Sub-
game perfect Nash equilibrium analysis predicts that all players
should defect immediately (s¼0). Our evolutionary analysis,
however, finds that for certain values of w, each of the five
strategies can be most common (Fig. 2(A)).

When selection is strong, w¼1, the evolutionary model agrees
with the sub-game perfect Nash equilibrium analysis: selection
opposes any cooperation, and immediate defection, s¼0, is the
most frequent strategy. But as the intensity of selection w
decreases, each increasingly cooperative strategy in turn becomes

most frequent. Finally, as we approach the weak selection limit,
(w-0), full cooperation, s¼4, is the most frequent strategy. The
same pattern occurs in the six round game (Fig. 2(B)). This pattern
is also not unique to the particular set of payoff values used in
Fig. 2, as shown in Fig. 3. Thus, in a stochastic evolutionary
framework with rare mutations, either immediate defection,
delayed defection or full cooperation can be the favored outcomes
depending on the intensity of selection. Reducing intensity of
selection promotes the evolution of cooperation in fixed
length games.

We now present an intuition underlying the success of
cooperation in our model. When selection is strong, what matters
for a strategy’s success is its ability to resist invasion. If a single
mutant is at a disadvantage in a given resident population, that
mutant will almost certainly die out. As a result, the resident
strategy will persist. A strategy which cooperates for i rounds is

Fig. 3. As the selection strength w decreases from w¼1, increasingly cooperative strategies are favored by natural selection over a range of payoff values. The smaller
initial payoff is fixed at a0¼0.1. In each panel, the most common strategy is indicated over a range of b and w values, and the value of the larger initial payoff a1 is varied
across panels, taking on the values of a1¼0.2 (A), (B), a1¼0.4 (C), (D), or a1¼1 (E), (F). Panels in the left column show results for the four round centipede game (A), (C), (E),
while panels in the right column show results for the size round game (B), (D), (F). All calculations use N¼1000.
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easily invaded by a strategy which cooperates for i–1 rounds, and
the strategy which never cooperates cannot be invaded by any
other strategies. Thus full defection is the only evolutionarily
stable strategy, and is favored when selection is strong. When
selection is weak, however, the dynamics are different. Even if a
single mutant is at a disadvantage in a given resident population,
that strategy will sometimes become more common through
random drift. Thus successful strategies must not only resist
invasion, but must also perform well in heterogeneous popula-
tions where both strategies have non-negligible frequencies. In
the limit of weak selection, success in these pairwise competi-
tions depends on risk-dominance (Antal et al., 2009a, 2009b). One
strategy risk-dominates another by earning a higher payoff when
both strategies are equally common, which is the case on average
in the weak selection limit. As can be seen from the payoff matrix
of the centipede game (Table 1) full cooperation can risk-dom-
inate immediate defection. Even though full cooperation performs
poorly when somewhat less cooperative strategies are present, it
can perform well in pairwise play against immediate defection.
When selection is weak, full cooperation can frequently invade
immediate defection, given the right payoffs: random drift can
help a full cooperator mutant overcome the initial disadvantage
faced when arising in a population of immediate defectors. As
selection becomes stronger, however, it becomes harder and
harder for full cooperation to overcome this initial disadvantage.
Full cooperation invading immediate defection is replaced by
bistability between the two strategies in the deterministic limit,
and we revert to the ESS/Nash case.

Next we compare the predictions of our evolutionary model to
experimental data. McKelvey and Palfrey (1992) performed beha-
vioral experiments using four and six round centipede games
(payoffs as shown in Fig. 1(A) and (B); we do not consider the
experimental data from a four round game with higher payoffs
run by McKelvey and Palfrey (1992), as there was only one
session of data and the behavior was not significantly different
from that observed in the four round game shown in Fig. 1(A)).
For each game, they present the average number of cooperative
moves (i.e., average game lengths) from three different

experimental sessions. They observed only few encounters that
ended with immediate defection: 7% of four round games and
o1% of six round games. Full cooperation was also rare: 5% of
four round games and 1% of six round games. Most subjects
showed an intermediate level of cooperation: defection was most
likely to occur on round two or three of the four round game, and
round three or four of the six round game.

To fit our evolutionary model to the experimental data, we can
vary the population size N and the selection intensity w. However,
the model’s behavior, and the resulting quality of the fit, is largely
constant along lines of constant Nw (see Fig. 4). The quantity Nw
can be seen as a measure of selection versus random drift in the
evolutionary process. Smaller values of Nw augment random drift.
We seek the value of Nw which minimizes the sum of squared

Fig. 4. We ask whether the model can reproduce the frequency of each game
length observed in the behavioral experiments. To fit the model to experimental
data, we minimize the sum of squared differences between the model predictions
and the observed values. We calculate the sum of squared differences over both
the four and six round games simultaneously, to produce a good fit to all data. The
colormap indicates this sum of squares (a measure of badness of fit), such that
lower z-axis values (shown in blue) indicate a better fit to the experimental data.
As can be seen, the best fits (i.e., lowest z-axis values) lie along a line of constant
Nw¼40. Thus we effectively fit the data using only a single free parameter
quantity Nw.

Fig. 5. Finite population size analysis quantitatively reproduces human behavior
from two laboratory experiments. Model predictions (Red) are generated using
payoffs a1¼0.4, a0¼0.1 and b¼2 and model parameters N¼1000 and w¼0.04.
The mean game length is shown for each of three separate experimental sessions
(blue) of McKelvey and Palfrey, 1992 for the four round game (A) and six round
game (B). For all but one of the 12 game length frequency data points, the model
prediction lies within the range of the mean values from the three experimental
sessions, and is not significantly different from the average frequency (Logistic
regression with robust standard errors clustered on subjects and session, p40.10
for all). The one prediction which lies outside of the range of experimental data
(full cooperation in the six round game, po0.001) exceeds the closest experi-
mental session value by only 4%. Furthermore, this deviation may be explained by
in-game learning across the 10 interactions played by each subject in the
experiment: the model prediction is not significantly different from the data
when controlling for interaction number (p¼0.534).

D.G. Rand, M.A. Nowak / Journal of Theoretical Biology 300 (2012) 212–221216



differences between the model predictions and the experimental
data. Predictions and data for both the four and six round games
are compared simultaneously, to generate the best overall fit. We
find that the evolutionary model quantitatively reproduces the
behavioral data from both experiments for Nw¼40 (Fig. 5). Our fit
is also robust to including strategies which behave differently as
Player 1 and Player 2 (see Appendix B). We note that in the
experiments, subjects played in only one role (unlike in our model
where players are equally like to be Player 1 or Player 2) and that
the number of players per session was much smaller than the
N¼1000 population size we consider (although the results vary
little when using a smaller population size of N¼100, see
Appendix C). As we are seeking to model the intuitions that
subjects bring into the lab, rather than the in-game learning that
occurs during the experiment, we chose these model features to
better represent the environment outside the lab in which
subjects’ intuitions seem likely to have developed. See below for
further discussion.

Our calculations thus far have assumed a vanishingly small
mutation rate. This assumption simplifies the analysis, allowing
direct numerical calculation of steady state frequencies. Here we
show that the results are robust to considering higher mutation
rates. To do so, agent based simulations are required. We simulate
a Moran process with each agent having a strategy chosen from
the finite set of possible strategies (s0 thru s4 for the four round
game, s0 thru s6 for the six round game). The population is
initialized randomly, the Moran process is simulated, and the
frequency of each strategy is then averaged over 107 simulated
generations. We find that our results are unchanged when the low
mutation limit assumption is relaxed. Agent based simulations
using higher mutation rates are also able to quantitatively
reproduce the observed human behavior (Fig. 6). Interestingly,
we observe a positive linear relationship between mutation rate u
and the best-fit value of Nw (Fig. 7). We can tune the randomness
of the evolutionary process by either increasing u or reducing Nw.

4. Discussion

We have explored the ability of stochastic evolutionary
dynamics to predict human behavior in the fixed-length centi-
pede game. In contrast to the predictions of classical economic
game theory, subjects in experimental centipede games exhibit
substantial levels of cooperation (McKelvey and Palfrey, 1992).
We show that such behavior can be favored by natural selection
when accounting for the stochastic nature of evolutionary
dynamics. When the intensity of selection is strong and evolution
is largely deterministic, selection favors the sub-game perfect
Nash equilibrium of immediate defection. But at lower intensities
of selection, both delayed defection and full cooperation can be
favored. The strategy which does best in a perfectly precise world
does not necessarily triumph in the presence of stochastic effects.
(See also Smead (2008), which explores extinction leading to
homogeneous populations of non-equilibrium strategies in finite
populations.)

Our analysis focuses on weak selection as the source of
randomness in the evolutionary process. Weak selection corre-
sponds to uncertainty regarding payoff: sometimes people imi-
tate the strategies of lower performing others (or in the genetic
context, sometimes lower payoff strategies out-reproduce higher
payoff ones). This stands in contrast to previous approaches for
understanding cooperation in the centipede game. Both incom-
plete information in economics (Kreps and Wilson, 1982a, 1982b;
Kreps et al., 1982) and mutation in biology (McNamara et al.,
2004) involve uncertainty about strategy rather than payoff. In
the context of incomplete information, you are unsure of the

Fig. 6. Agent based simulations (N¼250 due to computational constraints) show
that our model can fit the experimental data outside of the low mutation limit.
Shown is the model (red) and data (blue) for the four round (A) and six round
(B) games at u¼0.01, using the best-fit value of Nw¼100. The quality of the fit is
quite similar to that obtained using the low mutation limit.

Fig. 7. A linear relationship exists between the mutation rate u and the best-fit
value of Nw. Agent based simulations with N¼250 are used to explore evolu-
tionary dynamics with larger mutation rates. For various mutation rates, the
selection strength resulting in the best fit to the experimental data is shown. The
resulting relationship between u and Nw is well fit by a linear regression, R2¼0.98.
Moreover, the regression predicts that when u¼0, the best fit is given by Nw¼38.
This is very close to the value Nw¼40 determined by the low mutation limit
calculation. Such consistency is indicative of the robustness of the low mutation
limit analysis.
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preferences (and therefore the behavioral strategy) of your
partner when reasoning about what strategy to adopt yourself.
In the context of mutation, higher payoff agents are always more
likely to reproduce, but sometimes their strategy is passed on
incorrectly (or put differently, players sometimes get confused
when trying to imitate a higher payoff other and adopt the wrong
strategy).

Incomplete information can make any strategy rational except
for cooperation in the final round (Kreps and Wilson, 1982a,
1982b; Kreps et al., 1982); and local mutation in a fixed length
prisoner’s dilemma game can result in a sharp transition from no
cooperation to full cooperation when mutations are sufficiently
common (McNamara et al., 2004). Here we show that weak
selection in finite populations can favor both intermediate and
extreme strategies, combining the strengths of previous
approaches. Thus our framework can potentially help explain a
variety of social dilemma behaviors in biological contexts invol-
ving finite time horizons; for example, interactions occurring
within the course of a single breeding season such as competitive
egg ejection in the Greater Ani, a communally nesting bird species
(Riehl, 2011; Riehl and Jara, 2009). Furthermore, with only one
free parameter, and assuming only self-regarding preferences, our
evolutionary model is able to quantitatively reproduce human
cooperative behavior from two experiments. Therefore these
results also suggest the potential power of finite population
analysis for understanding the origins of human behavior.

We are not seeking to model the evolution of peoples’
strategies over the course of an experimental session in the lab
(Goeree and Holt, 1999). Rather, we suggest that subjects enter
the lab with intuitions which have been shaped by natural
selection in the context of daily life experiences. In this view,
laboratory experiments provide a snapshot of the end-product of
an evolutionary process, which can be compared to steady state
distributions from evolutionary models (Rand, 2011; Rand and
Nowak, 2011; Rand et al., 2009a). Our model does more than
restate the experimental observations in terms of a psychological
profile or a utility function. Instead, it suggests a specific evolu-
tionary mechanism underlying the results. The strategies
observed in these behavioral experiments, as opposed to being
altruistic or irrational, may in fact have been favored by the
competitive dynamics of an evolutionary process. Further
exploration of the possible link between stochastic evolutionary
models and human behavior is an exciting topic for both theore-
tical and experimental research.
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Appendix A. Low mutation limit calculation method

Here we reproduce the details of the calculation method used
in our low mutation limit calculations, first introduced in Antal
et al. (2009a). If viable mutants are very rare, the population
spends almost all of its time in a homogeneous state. When a
mutant arises, it either goes to fixation or dies out before the next
mutant arises, returning the system to a homogeneous popula-
tion. Let si be the frequency of strategy i, with a total of M
strategies. We can then assemble a transition matrix between
homogeneous states of the system. The transition probability

from state i to state j is the product of the probability of a mutant
of type j arising, 1=M  1, and the fixation probability of a single
mutant j in a population of i players, rj,i. The probability of staying
in state i is thus 1  ð1=M  1Þ

PM
j  1 rj,i, where ri,i ¼0. This transi-

tion matrix can then be used to calculate the steady state
frequency distribution sn of strategies:
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As this is a stochastic matrix, the largest eigenvalue of this matrix
will equal 1. The eigenvector corresponding to the eigenvalue 1 will
give the steady state distribution of the stochastic process.

Using the Moran process, the fixation probability rB,A (the
probability that a single A mutant introduced into a population of
B-players will take over) can be calculated as follows. Let the
pairwise payoffs of A and B be

A B
A

B

a b

c d

  
ð2Þ

where the value indicates the row player’s payoff. In a population
of x A-players and N–x B-players, the fitness of an A-player fx and
B-player gx are

f x ¼ 1  wþw aðx  1ÞþbðN  xÞ
  

gx ¼ 1  wþw cxþdðN  x  1Þ
  ð3Þ

where w is the intensity of selection.
The fixation probability of a single A-player in a population of

B-players can then be calculated (Nowak, 2006) as follows:

rB,A ¼
1

1þ
PN  1

k ¼ 1

Qk

x ¼ 1

gx
f x

ð4Þ

The calculations presented in the main text numerically
evaluate Eq. (4) for each strategy pair, and then numerically solve
Eq. (1) to determine the steady state frequency of each strategy.

Appendix B. Strategies which play differently as Player 1 and
Player 2

In the main text, we assume that players use the same strategy
regardless of their role. Here, we consider the case when players can
choose different strategies as Player 1 and Player 2. This increases
the size of the strategy set. In Table B.1, we present the payoff
matrix when using this expanded strategy set. A strategy is now
defined as si,j, where i is the number of times the player cooperates
before defecting when Player 1, and j is the number of times the
player cooperates before defecting when Player 2. Using this
expanded strategy set, we can again nicely reproduce the experi-
mental data, with only a small change in the optimal Nw, at Nw¼45.
The best fit to the experimental data using the expanded strategy set
is shown in Fig. B.1.
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Appendix C. Fitted outcomes for four and six round games
using N¼100

In the main text Fig. 5, we fit the experimental data using the
population size N¼1000 and selection strength w¼0.04. Here we
show, in Fig. C.1, that the result is qualitatively similar using the

Table B.1
Payoff matrix allowing for different strategies as Player 1 and Player 2 for a centipede game with a large initial payoff of a1¼0.4, a small initial payoff of a0¼0.1, and a
cooperative multiplier of b¼2. Shown is the row player’s payoff. For strategy si,j, i is the number of times the player cooperates when Player 1, and j is the number of times
the player cooperates when Player 2.

s0,0 s0,1 s0,2 s0,3 s1,0 s1,1 s1,2 s1,3 s2,0 s2,1 s2,2 s2,3 s3,0 s3,1 s3,2 s3,3

s0,0 0.25 0.25 0.25 0.25 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6
s0,1 0.25 0.25 0.25 0.25 0.4 0.4 0.4 0.4 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8
s0,2 0.25 0.25 0.25 0.25 0.4 0.4 0.4 0.4 1 1 1 1 6.6 6.6 6.6 6.6
s0,3 0.25 0.25 0.25 0.25 0.4 0.4 0.4 0.4 1 1 1 1 3.4 3.4 3.4 3.4
s1,0 0.15 0.85 0.85 0.85 0.5 1.2 1.2 1.2 0.5 1.2 1.2 1.2 0.5 1.2 1.2 1.2
s1,1 0.15 0.85 0.85 0.85 0.3 1 1 1 1.7 2.4 2.4 2.4 1.7 2.4 2.4 2.4
s1,2 0.15 0.85 0.85 0.85 0.3 1 1 1 0.9 1.6 1.6 1.6 6.5 7.2 7.2 7.2
s1,3 0.15 0.85 0.85 0.85 0.3 1 1 1 0.9 1.6 1.6 1.6 3.3 4 4 4
s2,0 0.15 0.45 3.25 3.25 0.5 0.8 3.6 3.6 0.5 0.8 3.6 3.6 0.5 0.8 3.6 3.6
s2,1 0.15 0.45 3.25 3.25 0.3 0.6 3.4 3.4 1.7 2 4.8 4.8 1.7 2 4.8 4.8
s2,2 0.15 0.45 3.25 3.25 0.3 0.6 3.4 3.4 0.9 1.2 4 4 6.5 6.8 9.6 9.6
s2,3 0.15 0.45 3.25 3.25 0.3 0.6 3.4 3.4 0.9 1.2 4 4 3.3 3.6 6.4 6.4
s3,0 0.15 0.45 1.65 12.85 0.5 0.8 2 13.2 0.5 0.8 2 13.2 0.5 0.8 2 13.2
s3,1 0.15 0.45 1.65 12.85 0.3 0.6 1.8 13 1.7 2 3.2 14.4 1.7 2 3.2 14.4
s3,2 0.15 0.45 1.65 12.85 0.3 0.6 1.8 13 0.9 1.2 2.4 13.6 6.5 6.8 8 19.2
s3,3 0.15 0.45 1.65 12.85 0.3 0.6 1.8 13 0.9 1.2 2.4 13.6 3.3 3.6 4.8 16

Fig. B.1. Best fit to the experimental data using an expanded strategy set. Here we
include strategies which play differently as Player 1 and Player 2. For example, a
strategy might defect on round 1 as Player 1, but cooperate throughout as Player 2.
This increases the number of strategies in the four round game from 5 to 9, and in
the six round game from 7 to 16. Interestingly, these additional strategies perform
very poorly, and are present at o1% frequency in the relevant Nw range. We find
that the model using this full strategy set fits the data well for Nw¼45.

Fig. C.1. Strategy frequencies in the four (A) and six (B) round games using
a1¼0.4, a0¼0.1 and b¼2, holding constant Nw¼40 and comparing N¼100 (with
w¼0.4) and N¼1000 (with w¼0.04).
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smaller population size of N¼100 (and correspondingly larger
selection strength w¼0.4).
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