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N o n lin e a r p a r a m e t r ic e xci t a t io n of
a n evo lu t io n a r y dyn a m ica l syst e m

Rocio E Ru e las1, D avid G Ra nd2 a nd Rich a r d H Ra nd3,4

A bst r ac t
N onlinear parametric excitation refers to the nonlinear analysis of a system of ordinary differential equations with
periodic coefficients. In contrast to linear parametric excitation, which offers determinations of the stability of equilibria,
nonlinear parametric excitation has as its goal the structure of the phase space, as given by a portrait of the Poincare
map. In this article, perturbation methods and numerical integration are applied to the replicator equation with periodic
coefficients, being a model from evolutionary game theory where evolutionary dynamics are added to classical game
theory using differential equations. In particular, we study evolution in the Rock–Paper–Scissors game, which has bio-
logical and social applications. H ere, periodic coefficients could represent seasonal variation.
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In t r o duc t io n
T he field of evolutionary dynamics describes the pro-
cess of D arwinian evolution (‘survival of the fittest’)
mathematically.1 T o do so, game theory (representing
the interaction between di  erent organisms) is com-
bined with di  erential equations (representing the grad-
ual changes associated with N ewtonian physics). G ame
theory formalizes multi-player interactions by describ-
ing how much each player gains or loses as a function
of which strategy they choose to play, as well as the
strategy chosen by the other players. In this article, we
will focus on the ‘ R ock–Paper–Scissors’ (R PS) game. In
R PS, players interact in pairs, and one of three strate-
gies is available for each player: rock (R), paper (P) or
scissors (S). T he payo  structure is such that rock beats
scissors, scissors beats paper, and paper beats rock ,
with the winner earning þ 1 and the loser earning  1.
T he resulting payo  matrix is thus given by

1

A

0

@

R P S
R 0  1 þ 1
P þ 1 0  1
S  1 þ 1 0

ð1Þ

T hese payo  s represent reproductive success in the con-
text of evolutionary game theory. W hen modeling
genetic evolution, reproductive success is measured in

number of o  spring, but evolutionary game theoretic
models can also represent ‘cultural evolution’ or social
learning among humans. H ere, people preferentially
imitate the strategies of successful others, and repro-
ductive success is measured in likelihood of being
imitated. Such social learning models can quantita-
tively reproduce behavior from human behavioral
experiments.2,3

Survival of the fittest dictates that strategies which
earn higher payo  s become more common over time.
T o add this dynamical element to game theory, the
payo  matrix is combined with di  erential equations.
O ne common approach is given by the ‘replicator equa-
tion’.1,4,12 T his is a di  erential equation whose coe  -
cients are taken from an associated payo  matrix. L et
A ij be the payo  of strategy i playing against strategy j
in a model involving a well-mixed infinitely large
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population of players. W e define x i as the fraction of
players in the population using strategy i. A ssuming
there are N possible strategies, we have the constraint

 N
i¼1 x i ¼ 1 ð2Þ

T he ‘fitness’ of an individual playing strategy i is given
by

f i ¼  N
j¼1 A ij x j ð3Þ

and the replicator equation stipulates that

_x i ¼ x ið f i   Þ ð4Þ

where  is chosen, so that the constraint (2) is satisfied.
D i  erentiating (2) and using (4), we must have

 N
i¼1 x ið f i   Þ ¼ 0 ð5Þ

Solving for  , we have

 ¼  N
j¼1 x j f j ð6Þ

where we have used equation (2).
E quation (4) can then be used to study the evolu-

tionary dynamics of a particular game. In this article,
we focus on R PS, which serves a model for many appli-
cations in both biology and social science. F or example,
an R PS dynamic is exhibited in mating behavior of the
side-blotched lizard U ta stansburiana.5 M ales that keep
large territories outcompete males that keep small ter-
ritories; males that sneak into the territories of others
and mate with unprotected females outcompete males
with large territories (which are hard to patrol); and
males with small territories outcompete sneaker males
(because they can e  ectively defend their smaller terri-
tories). Similarly, the bacteria Escherichia coli6 can also
have an R PS dynamic. A strain of the bacteria that
produces a toxin and an antidote outcompetes the reg-
ular (‘wild-type’) strain; a strain that only produces the
antidote outcompetes a strain that makes both the
toxin and the antidote (because the toxin is costly to
produce, but ine  ective if both produce the antidote);
and the wild-type strain outcompetes the strain which
produces only antidote (because the antidote is also
costly to produce, and useless in the absence of toxin).

R PS dynamics also occur in human interactions. F or
example, consider voluntary cooperative relationships
where people can choose whether to work together on
a common project.7,8 T here are three di  erent strategies
in such an interaction: cooperators choose to participate
in the project and do their fair share of work; defectors
also choose to participate in the project, but take advan-
tage of the work of others; and loners choose to work on

their own. D efectors exploit cooperators by avoiding the
time, e  ort and cost of contributing while still benefiting
from contributions of the cooperators. T hus, a popula-
tion of cooperators can be overcome by defectors. But in
a population of defectors, no one contributes and group
projects always fail. T herefore, it is better to work on
your own, and loners can overcome a population of
defectors. In a population of loners, however, no defec-
tors exist to exploit cooperators. T herefore, it would be
best to work together as a group, and cooperators can
dominate a population of loners.

In this article, we add periodic variation in payo  s to
the R PS game. T hese periodic e  ects could represent,
for example, fitness changes caused by seasonal fluctu-
ations in the weather, or earning changes caused by
seasonal variation in consumer spending. It has been
previously shown that when oscillations in payo  are
su  ciently fast, periodic coe  cients in a two-player
game can be reduced to constant coe  cients in a
multi-player game, leading to stable co-existence.9

T his article extends a previous paper by our research
group10 by featuring the e  ect of nonlinear terms in the
replicator equations; R and et al.10 considered only
linear terms.

Model

W e are interested in the e  ect of replacing the constant
coe  cients in the R PS payo  matrix (1) by periodic
coe  cients, for example of the form

1

A

0

@

R P S
R 0  1 þ A 1 cos!t 1 þ A 2 cos!t
P 1 þ A 3 cos!t 0  1 þ A 4 cos!t
S  1 þ A 5 cos!t 1 þ A 6 cos!t 0

ð7Þ

T he three replicator equations (4) can be reduced to
two equations on x1 and x2 by eliminating x3 via the
constraint (2), x3 ¼ 1  x1  x2. T he result is

_x1 ¼ x1ð1  2x2  x1Þ þ x1 G1ðx1 , x2 ; A iÞ cos!t ð8Þ

_x2 ¼ x2ðx2 þ 2x1  1Þ þ x2 G2ðx1 , x2 ; A iÞ cos!t ð9Þ

where G1 and G2 are polynomials in x1, x2 and the A i’s
(which we omit here for brevity). In the case that all the
A i coe  cients are zero, equations (8) and (9) admit a
first integral

x1 x2ð1  x1  x2Þ ¼ constant ð10Þ

See F igure 1 where the integral curves (10) are dis-
played for various values of the constant. E ach of
these curves represents a motion which is periodic in
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time. The points (1,0), (0,1), and (0,0), are equilibria for
equations (8) and (9). The lines x1¼ 0, x2¼ 0 and
x1þ x2¼ 1, are exact solutions for equations (8) and
(9). Note that x1þ x2¼ 1 is equivalent to x3¼ 0 in
view of equation (2). In the case that all the Ai coeffi-
cients are zero, there is another equilibrium at (1/3,1/3).

The presence of the time-varying periodic termsAi cos
!t destroys the first integral (10). In addition, for general
values of the Ai these terms destroy the equilibrium at
(1/3), (1/3). We wish to consider the case in which this
equilibrium is preserved under the periodic forcing. From
equations (8) and (9), this will require that G1 and G2

vanish at x1¼x2¼ 1/3. This turns out to require the fol-
lowing relationship between the Ai coefficients

A1 ¼ A6 þ A5 # A2 ð11Þ

A3 ¼ A6 þ A5 # A4 ð12Þ

We choose the simple case A1¼#A2¼#A, A3¼A4¼
A5¼A6¼ 0. This corresponds to the payoff matrix

1

A

0

@

R P S

R 0 #1# A cos!t 1þ A cos!t
P 1 0 #1
S #1 1 0

ð13Þ

and to the following governing differential equations

_x1 ¼ x1ð1# 2x2 # x1Þ½1þ ð1# x1ÞA cos!t' ð14Þ

_x2 ¼ x2ðx2 þ 2x1 # 1þ ½x1ð2x2 þ x1 # 1Þ'A cos!tÞ
ð15Þ

Numerical integration shows that for small values of A,
the periodic motions of the A¼ 0 system, given by
equation (10), are typically replaced by quasiperiodic
motions (Figure 2). In particular, motions starting
near the equilibrium point (1/3,1/3) typically remain
near it as in Figure 2. An exception occurs for cer-
tain values of the system parameters A and !. See
Figure 3 which displays a numerically integrated
motion starting near (1/3,1/3) for parameters A¼ 0.1,

Figure 1. Integral curves from equation (10). Each of these
curves represents a motion which is periodic in time.

Figure 2. Motions of equations (14) and (15) for A¼ 0.02 and
!¼ 1 obtained by numerical integration. Here, the periodic
motions of Fig. 1 are replaced by quasiperiodic motions. Note
that motions starting near the equilibrium point (1/3,1/3) remain
near it.

Figure 3. Motion of equations (14) and (15) for A¼ 0.1 and
!¼ 1.154 for initial conditions x1¼ x2¼ 0.333 obtained by
numerical integration. Note that here a motion which starts near
the equilibrium (1/3,1/3) travels far away from it.
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!¼ 1.154. Note that here a motion which starts near
the equilibrium (1/3,1/3) travels far away from it.

In what follows we seek to explain this phenomenon
using perturbation methods. In a previous work,10 res-
onant values of the parameters ! and A were identified
using Floquet theory and associated instabilities of the
equations linearized about the equilibrium point were
studied. In this study, we investigate the behavior of the
nonlinear equations of motion. This permits us to
understand the structure of the phase space in the
neighborhood of parametric resonances. That is, in
the previous work we were able to predict which
parameter values would lead to instabilities of the equi-
librium point, whereas in this study we are able to build
on the previous results and are able to say what hap-
pens away from the neighborhood of the equilibrium
point, including bifurcations of periodic motions.

Linear resonance

We begin by translating the origin to the equilibrium at
(1/3,1/3) and scaling the coordinates by e<< 1. We set

x1 ¼ !xþ 1

3
, x2 ¼ !yþ 1

3
, ð16Þ

and substitute these into equations (14) and (15), giving

_x ¼ 3 !xþ 1ð Þ ð3 !x% 2 ÞA cos!t% 3ð Þ 2 yþ xð Þ
9

ð17Þ

_y¼
3!yþ 1ð Þ ð6!xyþ 2yþ 3!x2 þxÞA cos!tþ 6xþ 3y

! "

9
ð18Þ

Our first step in the analysis of these ordinary differen-
tial equations (ODEs) is to determine which values of !
produce instability via parametric resonance for small
values of the forcing amplitude A. In the previous
paper,10 this was accomplished using Floquet theory.
Here, we obtain this information directly from the per-
turbation method as follows. We first linearize (17) and
(18) for small values of x and y. This can be done by
setting e¼ 0, giving

_x ¼ % xþ 2y

3

# $
% 2

9
ð2yþ xÞA cos!t ð19Þ

_y ¼ 2xþ y

3

# $
þ 1

9
ð2yþ xÞA cos!t ð20Þ

Now, we look for a solution to these equations via
regular perturbations, valid for small A<< 1. The eas-
iest way to do this is to transform this first-order system

of ODEs into a single second-order ODE by differenti-
ating (19) and substituting expressions for _y from (20)
and for y from (19), giving

f1 €xþ f2 _xþ f3x ¼ 0 ð21Þ

where

f1 ¼ 3þ 2A cos!t ð22Þ

f2 ¼ 2A! sin!t ð23Þ

f3 ¼
3þ 2A cos!t

3

# $2

ð24Þ

We set

x ¼ x0 þ A x1 þOðA2Þ ð25Þ

Substituting (25) into (21) and collecting terms gives

€x0 þ
x0
3

¼ 0 ð26Þ

€x1 þ
x1
3

¼ % 2

3
€x0 cos!t%

2

3
! _x0 sin!t%

4

9
x0 cos!t

ð27Þ

Equation (26) shows that x0 will have frequency 1=
ffiffiffi
3

p
,

whereupon the right hand side of equation (27) will
have terms with frequencies

!& 1ffiffiffi
3

p ð28Þ

Resonant values of ! will correspond to forcing fre-
quencies (28) which are equal to natural frequencies
of the homogeneous x1 equation, i.e. to 1=

ffiffiffi
3

p
. This

gives that

! ¼ 2ffiffiffi
3

p (resonance) ð29Þ

This value of ! corresponds to the largest resonance
tongue. There are an infinitude of smaller tongues
which would emerge from the perturbation method if
we were to continue it to O(A2) and higher. These
have been shown10 to be of the form ! ¼ 2=ðn

ffiffiffi
3

p
Þ for

n¼ 2, 3,. . . but will not concern us in this study.

Multiple scales perturbation method

The resonance (29) partially explains the phenomenon
displayed in Figure 3: when ! lies close to the resonant
value of 2ffiffi

3
p , motions which start near the equilibrium

point (x¼ 0, y¼ 0) (i.e. (x1¼ 1/3, x2¼ 1/3)) may move
relatively far away from it. This result is incomplete in
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that it does not explain how far a motion will travel
from the equilibrium point, or how the motion depends
on initial conditions, or how close to the resonance
value (29) the parameter ! must be chosen for this phe-
nomenon to occur. In this section of this article, we
obtain approximate answers to these questions using
a more powerful perturbation approach.13

We prepare for the perturbation expansion by set-
ting !¼!t and A¼ e2 in equations (17) and (18), and
then again transforming the two first-order ODEs into
a single second-order nonlinear ODE, giving

18!2 3 "xþ 1ð Þ 3 "3 x cos ! % 2 "2 cos ! % 3
! "

x00 ¼

81 "!2 6 "3 x cos ! % 1
! "

x02

% 18 "2 !2 sin ! 3 "x% 2ð Þ 3 " xþ 1ð Þ x0

% 243 "9 x6 cos2 ! þ 162 "6 cos ! 2 "2 cos ! þ 3
! "

x5

% 27 "3 "4 cos2 ! þ 12 "2 cos ! þ 9
! "

x4

% 18 "4 cos ! 5 "2 cos ! þ 9
! "

x3

þ 3 " 2 "2 cos ! þ 3
! "

2 "2 cos ! þ 9
! "

x2

þ 2 2 "2 cos ! þ 3
! "2

x ð30Þ

where primes represent differentiation with respect to !.
Neglecting terms of O(e3), we obtain

!2x 00þx

3
¼
" 3!2x 02%x2
! "

2

%
"2 !2 81xx 02þ12x0 sin!

! "
%27x3þ4xcos!

! "

18

þOð"3Þ ð31Þ

Next, we define three time scales x, Z, and z

# ¼ !, $ ¼ "!, % ¼ "2! ð32Þ
and we consider x to be a function of x, Z, and z,
whereupon the chain rule gives

x0 ¼ x# þ "x$ þ "2x% ð33Þ

x00 ¼ x## þ 2"x#$ þ 2"2x#% þ "2x$$ ð34Þ

We detune ! off of the resonance (29)

! ¼ 2ffiffiffi
3

p þ k"2 þ & & & ð35Þ

and expand x¼x0þ ex1þ e2x2þ &&&. Substituting (33)
and (34) and these expansions into (31) and collecting
terms, we obtain

Lx0 ¼ 0, where Lð'Þ ¼ ð'Þ## þ
1

4
ð'Þ ð36Þ

Lx1 ¼ % 3

8
x20 % 2x0#$ þ

3

2
x0

2
# ð37Þ

Lx2 ¼ % 3

4
x0x1 þ

9

8
x30 %

ffiffiffi
3

p
kx0## %

1

6
x0 cos # % 2x1#$

% 2x0#% % x0$$ þ 3x0#x1# %
9

2
x0x0

2
# %

2

3
x0# sin #

þ 3x0$x0# ð38Þ

We take the solution of (36) in the form

x0 ¼ a0ð$, %Þ cos
#

2
þ b0ð$, %Þ sin

#

2
ð39Þ

We substitute the expression for x0 (39) into the x1
equation (37), and remove secular terms, giving

@a0
@$

¼ 0,
@b0
@$

¼ 0 ) a0 ¼ a0ð%Þ, b0 ¼ b0ð%Þ

ð40Þ

Solving for x1, we obtain

x1 ¼ a1ð$, %Þ cos
#

2
þ b1ð$, %Þ sin

#

2
þ a0 b0 sin #

% 1

2
b0

2 cos # þ 1

2
a0

2 cos # ð41Þ

Next, we substitute the expression for x1 (41) into the x2
equation (38), and remove secular terms, giving

@a1
@$

¼ f ða0, b0Þ,
@b1
@$

¼ gða0, b0Þ ð42Þ

where

f ða0,b0Þ ¼ %da0
d%

þ b0
12

%
ffiffiffi
3

p

4
kb0 %

3

4
b30 %

3

4
a20b0 ð43Þ

gða0,b0Þ ¼ %db0
d%

þ a0
12

þ
ffiffiffi
3

p

4
ka0 þ

3

4
a30 þ

3

4
b20a0 ð44Þ

Now, from equation (40), we see that a0 and b0 do not
depend on Z, which means that neither do f(a0, b0) or
g(a0, b0), and so equation (42) shows that a1 and b1
will grow linearly in time Z unless f(a0, b0) ¼ 0 and
g(a0, b0) ¼ 0. Thus, for a1 and b1 to remain bounded,
we require

da0
d%

¼ b0
12

%
ffiffiffi
3

p

4
kb0 %

3

4
b30 %

3

4
a20b0 ð45Þ

db0
d%

¼ a0
12

þ
ffiffiffi
3

p

4
ka0 þ

3

4
a30 þ

3

4
b20a0 ð46Þ
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This system of slow-flow equations is easier to deal with
in polar coordinates

@r

@!
¼ 1

12
r sin 2",

@"

@!
¼ 3

4
r2 þ cos 2"

12
þ

ffiffiffi
3

p

4
k ð47Þ

where a0¼ r cos y and b0¼ r sin y.
In view of equation (39), equilibrium points in the

slow-flow (47) correspond to periodic motions in the
original system (14) and (15). The first of (47) gives
y¼ 0, p/2, p, 3p/2, whereupon the second of (47) gives

3

4
r2 % 1

12
þ

ffiffiffi
3

p

4
k ¼ 0 ) r2 ¼ & 1

9
'

ffiffiffi
3

p

3
k ð48Þ

Since r2> 0, we get bifurcations at

k ¼ % 1

3
ffiffiffi
3

p ð49Þ

For k4 1
3
ffiffi
3

p , there are no nontrivial equilibria, while
for k5 ' 1

3
ffiffi
3

p there are four. In the intermediate case
of ' 1

3
ffiffi
3

p 5 k5 1
3
ffiffi
3

p , there are two nontrivial equilibria.
From A¼ e2 and equation (35), the bifurcation curves
have the form

! ¼ 2ffiffiffi
3

p % 1

3
ffiffiffi
3

p Aþ ( ( ( ð50Þ

which agrees with the location of stability transition
curves in the study of Rand et al.10 (Fig. 4).

The slow-flow (47) is conservative and admits the
following first integral

9r4 þ 2ð3
ffiffiffi
3

p
kþ cos 2"Þr2 ¼ constant ð51Þ

Figure 5 displays the first integral (51) for k ¼ 1
3
ffiffi
3

p þ
0:2 ¼ 0:3925, k¼ 0, and k ¼ ' 1

3
ffiffi
3

p ' 0:2 ¼ '0:3925,

respectively. Here, we have identified x with a0, being
approximately x0 at x¼ 0 in equation (39). Similarly, x0

is identified with b0/2.

Figure 4. Bifurcation curves (50) showing the number of non-
trivial equilibria in the slow flow (45) and (46). See Figure 5 for
sample phase portraits of the slow flow in each of these regions.

Figure 5. Plot of the first integral (51) for various values of k.
Note, that as k decreases, the system traverses the tongue in
Figure 4 from right to left and the number of nontrivial equilibria
changes.
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Poincare map

The foregoing results of the perturbation method may
be compared to numerical integration of equation (30)
by use of a Poincare map. Here, we imagine a flow on a
three-dimensional phase space with axes x, x0, t, and an
associated map produced by sampling the said flow at
times !¼ 2Np, for N¼ 0, 1, 2, 3,. . . . The associated
Poincare maps depend upon both ! and e. Local behav-
ior around the equilibrium point at the origin x¼x0¼0
is naturally affected by ! as shown in Figure 5. The
parameter e affects both the strength of the forcing
(because the forcing amplitude A¼ e2) and the impor-
tance of nonlinearities (because the coordinates have
been scaled by e, cf. equation (16)).

As a check on the perturbation results (which are
expected to be valid for small e), we first present
Poincare maps for e¼ 0.1 and for the same values of
! as shown in Figure 5. See Figure 6. Note that there is
good agreement in the neighborhood of the origin.

As an example of the kind of behavior which occurs
for larger values of e, we present Poincare maps for
e¼ 1 and for the same values of k as shown in
Figure 6. See Figure 7. These figures show the appear-
ance of chaos which is associated with KAM theory.11

KAM theory, named for its inventors, Kolmogorov,
Arnold, and Moser, describes the onset of chaos in a
perturbed Hamiltonian system. Among the various
features of KAM theory is the phenomenon that
chaos occurs most noticeably in the neighborhood of
motions which in the unperturbed Hamiltonian system
are in low-order resonance with the periodic driver.
This is relevant to us here because equations (14)
and (15) may be written in the form of a perturbed
Hamiltonian system

_x1 ¼
@H

@x2
þ A cos!t

h

@M

@x2
ð52Þ

_x2 ¼ % @H

@x1
% A cos!t

h

@M

@x1
ð53Þ

where

H ¼ x1x2ð1% x1 % x2Þ ð54Þ

h ¼ %1

x1ð1% x1Þ2ð1% x1 % 2x2Þ
ð55Þ

M ¼ x2
x1 % 1

ð56Þ

Thus, when A¼0, the systems (14) and (15) are integra-
ble and the Poincare map consists of closed curves as
shown in Figure 1. Then, as predicted by KAM theory,

the closed curves in the Poincare map of the unper-
turbed Hamiltonian system which are in n : 1 resonance
with cos !t are replaced by 2 n–cycles, one stable and
one unstable. The stable n-cycle appears in simula-
tions as n closed curves lying in the neighborhood of
the unperturbed resonant curve. The unstable n-cycle
appears as n saddles, each carrying a region of localized
chaos with it. Some of these features may be seen in
Figure 7.

Figure 6. Poincare map obtained by numerically integrating
equation (30) for e¼ 0.1 and ! ¼ 2=

ffiffiffi
3

p
þ k"2. Cf. Figure 5.
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Conclusions

In this study, we have investigated the effect of adding
periodic coefficients to a system which is more com-
monly treated as having constant coefficients. The
system studied is a replicator equation based on an
RPS scenario characterized by the payoff matrix (13)
and governed by the differential equations (14) and
(15). In the A¼0 constant coefficient case, this system
is integrable with the first integral (10) and has the

property that the equilibrium at (1/3,1/3) is Liapunov
stable (Figure 1). By contrast, in the A> 0 system with
periodic forcing, this same equilibrium can be unstable
(Figure 3) due to parametric resonance (Figure 4). The
analysis presented in this article, valid for small values
of A, has shown that detuning off of this resonance is,
however, unsymmetric. That is, systems which lie

Figure 7. Poincare map obtained by numerically integrating
equation (30) for e¼ 1 and ! ¼ 2=

ffiffiffi
3

p
þ k!2. Cf. Figure 6.

Figure 8. Motion of equations (14) and (15) for A¼ 0.1 and
! ¼ 2ffiffi

3
p # ð 1

3
ffiffi
3

p þ 0:2ÞA ¼ 1:1155 for initial conditions
x1¼ x2¼ 0.3 obtained by numerical integration. This system lies
to the left of the resonance tongue in Figure 4. Note that here a
motion which starts near the equilibrium (1/3,1/3) travels far
away from it.

Figure 9. Motion of equations (14) and (15) for A¼ 0.1 and
! ¼ 2ffiffi

3
p þ ð 1

3
ffiffi
3

p þ 0:2ÞA ¼ 1:1939 for initial conditions
x1¼ x2¼ 0.3 obtained by numerical integration. This system lies
to the right of the resonance tongue in Figure 4. Note that here a
motion which starts near the equilibrium (1/3,1/3) remains close
to it.
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outside and just to the left of the resonance tongue
of Figure 4 have very different behavior from those
systems which lie just to the right of the same
tongue. (Figures 8 and 9). This behavior is predicted
by the perturbation theory, cf. the Poincare maps in
Figure 5. For larger values of A we have seen that the
system studied exhibits KAM type chaos (Figure 7).

Our results have implications for biological systems
with RPS characteristics, such as the side-blotched
lizard Uta stansburiana that displays persistent oscilla-
tions in population abundances.5 Previous work has
described the dynamics of this species using an evolu-
tionary model with damping, and has attributed the
persistence of the oscillations observed in the data to
stochastic perturbations which reset the initial condi-
tions (using a verbal rather than mathematical argu-
ment).5 In this study, we have instead approached this
issue by considering an external forcing function that
drives the system via periodicity in the payoff coeffi-
cients. We showed how deterministic external forc-
ing can lead to nonperiodic variation in population
abundance.
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